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Abstract
We consider the eigenspectrum solution of a many-body problem of interacting
spin-s particles that can be solvable within the generalized Bethe ansatz method.
We assume that the interactions are encoded in terms of an arbitrary U(1)

invariant factorizable S-matrix. The exact solution of the spin part is based on
a unified formulation of the quantum inverse scattering method for an arbitrary
(2s +1)-dimensional monodromy matrix. The respective eigenstates are shown
to be given in terms of 2s creation fields by a general new recurrence relation.
This allows us to derive the spectrum and the respective Bethe ansatz equations.

PACS numbers: 05.30.−d, 04.20.Jb, 03.65.Fd, 02.30.Ik

The existence of exactly solved models has been playing a fundamental role in our
understanding of interacting one-dimensional many-particle systems in distinct areas of
theoretical physics [1–4]. An important class of models is N-particle systems whose state
vector has the structure of a generalized Bethe ansatz wavefunction [5]. In these cases, the
state of a given j th particle carries besides momenta k(µj ) and energy ε(µj ), parameterized
by some rapidity µj , an extra quantum number aj = 1, . . . , ns which represents the many
possible ns species of particles. The Bethe ansatz solution asserts that the projection
of the state vector of the system in the region the particle coordinates are ordered as
0 � xQ1 < xQ2 < · · · < xQN

� L has the form [2, 4, 5],

�a1...aN
(x1, . . . , xN) =

∑
P

Aa1,...,aN
(P |Q)exp


i

N∑
j=1

k
(
µPj

)
xQj


 , (1)

where P ≡ {P1, . . . , PN } and Q ≡ {Q1, . . . , QN } denote permutations of the numbers
1, . . . , N that index the particles. The sum runs over all N ! permutations P of {1, . . . , N}
and the complex coefficients Aa1,...,aN

(P |Q) account for the wavefunction internal degrees of
freedom.

The wavefunctions of the various regions, according to the possible ordering of the
particles on the ring of size L, are expected to be connected to one another only through
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a sequence of two-body exchange processes. For instance, two distinct regions (P |Q) and
(P̄ |Q̄) differing by the permutation of neighbouring ith and j th particles will be related by

Aa1,...,ai ,aj ,...,aN
(P̄ |Q̄) = S(µi, µj )

bi ,bj

ai ,aj
Aa1,...,bi ,bj ,...,aN

(P |Q), (2)

where the elements S(µi, µj )
bi ,bj

ai ,aj
are supposed to encode the interactions between the particles.

They are formally viewed as the amplitudes of the S-matrix of a factorizable scattering [6],

Ŝ12(µ1, µ2) =
ns∑

a1,a2,b1,b2

S(µ1, µ2)
a1,a2
b1,b2

eb1,a1 ⊗ eb2,a2 (3)

where ea,b denotes ns × ns Weyl matrices.
This type of factorizable theory has been first emerged in the study of the eigenspectrum

problem associated with particles interacting through delta-function potential [5, 7]. It was
then discovered that in order to assure exact solubility the scattering amplitudes needed to
satisfy a necessary condition called Yang–Baxter equation [1, 5],

S(µ1, µ2)
γ1,γ2
a1,a2

S(µ1, µ3)
b1,γ3
γ1,a3

S(µ2, µ3)
b2,b3
γ2,γ3

= S(µ2, µ3)
γ2,γ3
a2,a3

S(µ1, µ3)
γ1,b3
a1,γ3

S(µ1, µ2)
b1,b2
γ1,γ2

, (4)

where sum of repeated indices is assumed. Here we will also request that solutions of (4) are
almost unitary, namely

S(µ1, µ2)
c,d
a,bS(µ2, µ1)

α,γ

d,c = ρ(µ1, µ2)δa,γ δb,α, (5)

for some arbitrary function ρ(µ1, µ2).
This framework has also been argued by Sutherland [8] to be of utility even when the

wavefunction (1), (2) does not hold everywhere, as it did for the delta-function potential. The
idea is that for some interactions with finite range Rc there exist regions |xi −xj | � Rc where
the particles behave as free ones and the off-mass-shell effects are expected to be neglected.
The underlying scattering theory will then provide the conditions to match the wavefunction
in adjacent free regions.

In this paper we assume the existence of such models that can either be solved exactly or
asymptotically by the general Bethe wavefunction (1), (2). In any of the situations, one still
has to find the quantization rule for the one-particle momenta k(µj ), providing the means to
study the physical properties of the system. In order to accomplish that one has to diagonalize
the transfer matrix operator of an inhomogeneous vertex model of statistical mechanics whose
Boltzmann weights are the elements of the non-diagonal factorized S-matrix (3). In what
follows we will consider such a remaining problem in the general situation in which the
scattering amplitudes depend on both values of two independent µ1 and µ2 rapidities. More
specifically, when periodic boundary conditions are imposed on the wavefunction (1), (2), the
one-particle momenta k(µj ) are required to satisfy the following eigenvalue equation,

eik(µj )L = �(λ = µj ,
−→µ )

[ρ(µj , µj )]1/2
, j = 1, . . . , N, (6)

where −→µ denotes the set {µ1, µ2, . . . , µN } of rapidities. The energy E of the system is given
by adding the one-particle energy expressions, namely

E =
N∑

j=1

ε(µj ). (7)

The function �(λ,−→µ ) represents the eigenvalues of an auxiliary [ns]N × [ns]N operator
T (λ,−→µ ) usually called transfer matrix. This auxiliary eigenvalue problem can be defined by,

T (λ,−→µ )|ψ〉 = TrA[TA(λ,−→µ )]|ψ〉 = �(λ,−→µ )|ψ〉, (8)
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where the trace is taken over an auxiliary ns-dimensional space A ≡ Cns . Furthermore, the
monodromy operator TA(λ,−→µ ) is related to the S-matrix elements by the following ordered
product [9, 10],

TA(λ,−→µ ) = ŜAN(λ, µN)ŜAN−1(λ, µN−1) . . . ŜA1(λ, µ1). (9)

In order to make further progress it becomes crucial the exact solution of the eigenvalue
problem (8), (9) for arbitrary ns and two-body scattering amplitudes. This is indeed a
tantalizing open problem, especially when a particular form of S(µ1, µ2)

c,d
a,b is not specified.

Indeed, most of the results concentrate on specific S-matrices such as those related to the
six-vertex model [11], to its higher spin descendents [12] and those based on higher rank
Lie algebras [13–17]. In the latter case, some of the findings [16, 17] are still in the form
of conjectures for the transfer matrix eigenvalues and also the number ns actually encodes a
variety of distinct conserved quantum numbers such as spin, colour, flavour, etc. Consequently,
the number of null scattering coefficients grows rapidly with ns due to the many possible
underlying U(1) symmetries.

In this work, however, we shall establish the essential tools to solve the eigenvalue problem
(8), (9) when only a unique U(1) symmetry is present for arbitrary ns . This is the minimal
continuous invariance one could request and our results will be valid for arbitrary factorizable
S-matrices satisfying such symmetry condition and the unitarity relation (5). More precisely,
we are considering integrable models whose S-matrices fulfil the property,

[
Ŝ12(µ1, µ2), S

z
1 + Sz

2

] = 0, (10)

where Sz
j is the azimuthal component of spin-s operator associated with the j th particle such

that s = (ns − 1)/2. Note that relation (10) means S(λ, µ)
a1,a2
b1,b2

= 0 unless the ice rule
a1 + a2 = b1 + b2 is satisfied which leads us to a total number of ns

(
2n2

s + 1
)/

3 non-null
amplitudes.

The direct connection between the number of species and the spin of the particles makes
these integrable models physically relevant. We shall tackle this problem by means of the
quantum inverse scattering method [9, 10]. We remark that, in general, there is no known
recipe to perform this task; therefore our results can be considered as new developments in
this framework.

The most important quantity in this method is the monodromy matrix elements on the
auxiliary space which here will be shortly denoted by T (λ)p,q, p, q = 1, . . . , ns . These are
operators on the quantum space

∏N
j=1 ⊗ C

ns

j such that the diagonal entries define the transfer
matrix eigenvalue problem (8) while the off-diagonal ones will play the role of creation and
annihilation fields. The commutation relations between such matrix elements are given with
the help of the corresponding Yang–Baxter algebra,

S(λ, µ)
α,γ

a,b Tα,p(λ)Tγ,q(µ) = Tb,c(µ)Ta,d(λ)S(λ, µ)
p,q

d,c . (11)

In order that the model be soluble by means of an algebraic Bethe ansatz, it is fundamental
the existence a vacuum state |0〉 such that the monodromy operator (9) acts on it as a triangular
matrix on the auxiliary space for arbitrary λ. Thanks to the underlying U(1) symmetry, it is
possible to build up this state by the tensor product of local vectors,

|0〉 =
N∏

j=1

⊗|s〉j , Sz
j |s〉j = s|s〉j , (12)

where |s〉j denotes the j th spin-s highest state vector.
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It turns out that this is one possible eigenvector on which the matrix elements of Tp,q(λ)

operate as follows,

Tp,q(λ)|0〉 =




∏N
j=1 S(λ, µj )

p,1
p,1|0〉 for p = q

0 for p < q

|pq〉 for p < q

(13)

where |pq〉 are non-null vectors representing excitations over the vacuum |0〉.
From the above expressions we see that the fields Tp,q(λ) for p > q act as creation

operators with respect to the reference state |0〉. Of particular importance are the operators
T1,q (λ) (q � 2) which satisfy the following property,


T1,q(λ),

N∑
j=1

Sz
j


 = (q − 1)T1,q (λ). (14)

A direct consequence of (14) is that the fields T1,q (λ) can be interpreted as raising operators
associated with excitations over the ferromagnetic vacuum |0〉 with spin component s − q + 1.
It is therefore plausible to suppose that the eigenvectors |ψ〉 = 
m(λ1, . . . , λm)|0〉 of (8)
should be constructed similarly as a Fock space having 2s possible distinct creation fields.
Considering that both the total number of particles and spin are conserved quantities one
expects that the eigenvectors structure should be as follows. The field T1,2(λ1) represents the
one-particle state, the linear combination T1,2(λ1)T1,2(λ2) + ψ1(λ1, λ2)T1,3(λ1)T1,1(λ2), for
some function ψ1(λ1, λ2), the two-particle states and so forth. It turns out that the form of
such linear combinations can be inferred on the basis of the commutation rules between the
fields T1,q (λ) derived from the quadratic algebra (11). In addition to that, we emphasize that
much of the simplifications needed to construct suitable eigenstates are carried out only on
the basis of an extensive use of the Yang–Baxter (4) and the unitarity (5) constraints between
the scattering amplitudes. Omitting here the technicalities of these computations [18] we find
that the multi-particle states obey a 2s-order recursion relation given by,


m(λ1, . . . , λm) =
min{2s,m}∑

k=1

∑
2�j2<···<jk�m

ψk
2

(
λ1, λj2 , . . . , λjk

)
T1,1+k(λ1)
m−k

× (λ2, . . . , λj2−1, λj2+1, . . . , λj3−1, λj3+1, . . . , λjk−1, λjk+1, . . . , λm)

×
k∏

d=2

T1,1
(
λjd

) k∏
l=2

m∏
t1=2

t1 �=j2,...,jk

S
(
λt1 , λjl

)1,1
1,1

S
(
λt1 , λjl

)2,1
2,1

jl∏
t2=2

t2 �=j2,...,jk

�
(
λt2 , λjl

)
, (15)

where we identify 
0 ≡ 1 and function �(λ,µ) is1,

�(λ,µ) = S(λ, µ)
3,1
3,1S(λ, µ)

2,2
2,2 − S(λ, µ)

2,2
3,1S(λ, µ)

3,1
2,2

S(λ, µ)
1,1
1,1S(λ, µ)

3,1
3,1

. (16)

In the course of our analysis we also have made the natural hypothesis that the field
states (15) are symmetric functions in all {λj } variables. This exchange property between the
variables λ1 and λ2 can be used to determine ψk

2

(
λ1, λj2 , . . . , λjk

)
in terms of the scattering

1 We remark that for s = 1
2 both numerator and denominator of (16) vanish and the respective limit gives us

�(λ, µ) = S(λ,µ)
2,2
2,2

S(λ,µ)
1,1
1,1

.
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amplitudes recursively. The simplest case being s = 1/2 where by fixing ψ 1
2
(λ) = 1 we find

that ψ1(λ, µ) is

ψ1(λ, µ) = −S(λ, µ)
2,2
3,1

S(λ, µ)
3,1
3,1

. (17)

Similar task for higher spin is in general more involved but it can be done for any specific
value of the spin [18]. As an extra example we present below the explicit expression for
s = 3/2,

ψ 3
2
(λ, µ, τ) = �(λ,µ)ψ1(λ, τ )S(λ, µ)

1,1
1,1S(λ, µ)

3,2
4,1

S(λ, µ)
4,1
3,2S(λ, µ)

3,2
4,1 − S(λ, µ)

3,2
3,2S(λ, µ)

4,1
4,1

+ ψ1(µ, τ)
S(λ, µ)

2,3
3,2S(λ, µ)

3,2
4,1 − S(λ, µ)

3,2
3,2S(λ, µ)

2,3
4,1

S(λ, µ)
4,1
3,2S(λ, µ)

3,2
4,1 − S(λ, µ)

3,2
3,2S(λ, µ)

4,1
4,1

. (18)

For s = 1/2 our result (15) recovers the known algebraic Bethe states associated with the
six-vertex model [9, 10] while for s = 1 we have an extension of the Bethe states for nineteen-
vertex models [19]. In fact, apart from factorizability and unitarity, no other assumptions
on the S-matrices elements entering the eigenstates (15) have been made. In addition, the
generality of our recursive manner to generate the eigenstates for arbitrary spin-s is, as far
as we know, a new progress in the quantum inverse scattering approach. It follows from the
commutation relation (14) and our construction (15) the property,

N∑
j=1

Sz
j
m(λ1, . . . , λm)|0〉 = (sN − m)
m(λ1, . . . , λm)|0〉, (19)

which corroborates the physical interpretation of 
m(λ1, . . . , λm)|0〉 being multi-particle states
over |0〉.

We now turn our attention to the determination of the eigenvalues �(λ,−→µ ). From (8) one
has to carry on the diagonal fields Tp,p(λ) over the creation fields T1,q (µ) (q � 2) that built
the multi-particle states (15). This task is made by recasting the Yang–Baxter algebra (11) in
the form of commutation rules between these fields. In general, convenient commutation rules
do not follow immediately from (11) and a two-step procedure is needed. To give an example
of our approach let us denote by [l; k] the lth row and the kth column of (11). The appropriate
commutation relations between the fields T1,2(λ) and Tp,p(λ) for 1 < p < ns are obtained by
using the combination [l; (l − 1) ∗ns + 2]Sl+1,1

l+1,1(λ, µ)− [l; l ∗ns + 1]Sl,2
l+1,1(λ, µ) of the entries

of (11). The basic idea is to keep the diagonal operator Tp,p(λ) always in the right-hand side
position in the commutation rules and such procedure can be implemented for all creation
fields T1,q (µ). The eigenvalues are easily collected by keeping only the first terms of the
commutation rules among T1,q(µ) and Tp,p(λ) and after some cumbersome simplifications we
find that the final result for �(λ,−→µ ) is,

�(λ,−→µ ) =
N∏

i=1

S(λ, µi)
1,1
1,1

m∏
l=1

S(λl, λ)
1,1
1,1

S(λl, λ)
2,1
2,1

+
ns−1∑
k=2

N∏
i=1

S(λ, µi)
k,1
k,1

m∏
l=1

Fk(λ, λl)

+
N∏

i=1

S(λ, µi)
ns ,1
ns ,1

m∏
l=1

S(λ, λl)
ns ,2
ns ,2

S(λ, λl)
ns ,1
ns ,1

, (20)

where

Fk(λ, µ) = S(λ, µ)
k,2
k,2S(λ, µ)

k+1,1
k+1,1 − S(λ, µ)

k+1,1
k,2 S(λ, µ)

k,2
k+1,1

S(λ, µ)
k,1
k,1S(λ, µ)

k+1,1
k+1,1

. (21)
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The remaining terms that are not proportional to the eigenvector (15) can be cancelled
out by imposing further restriction on the rapidities {λj }. These are auxiliary Bethe ansatz
equations and in our case only a unique relation is needed to eliminate all such unwanted
terms. It is given by

N∏
l=1

S(λj , µl)
1,1
1,1

S(λj , µl)
2,1
2,1

=
m∏

i=1
i �=j

�(λj , λi)
S(λj , λi)

1,1
1,1

S(λj , λi)
2,1
2,1

S(λi, λj )
2,1
2,1

S(λi, λj )
1,1
1,1

. (22)

Before proceeding we remark that our expressions (20)–(22) reproduce the eigenvalues
and Bethe ansatz equations of a particular integrable model with higher spin obtained through
fusion procedure of six-vertex S-matrices [12]. Even in this special case, one hopes that
our general expression for the eigenstates (15) could still be of utility as far as correlation
functions are concerned [20]. We note that a systematic classification of the solutions of the
Yang–Baxter equation (4) is beyond the reach at present. We expect therefore that our results
will be useful to other U(1) S-matrices, specially because no assumption on their spectral
parameter dependence has been made.

At this point we have been able to derive that basic ingredients to obtain the quantization
rule for the one-particle momenta p(µj ). This follows directly from (6), (20) and the unitarity
property of the S-matrix (5), i.e. the condition S(λ, λ)

c,d
a,b ∼ δa,dδb,c. The final result is

eik(µj )L =
N∏

i=1
i �=j

S(µj , µi)
1,1
1,1

m∏
l=1

S(λl, µj )
1,1
1,1

S(λl, µj )
2,1
2,1

. (23)

The results (22), (23) are essential in order to investigate the thermodynamic limit
properties for a fixed density N/L. They have the merit of being derived under mild
assumptions for the two-body collision amplitudes and therefore with potential for widespread
applicability.

In conclusion, we have solved exactly the eigenspectrum of a system of spin-s particles
that interact via arbitrary U(1) factorizable S-matrix. The structure of both eigenvectors and
the eigenvalues was derived solely from the Yang–Baxter relations (4), (11) and the unitarity
property (5). We believe that our formula (15) is capable of accommodating the solution of
other integrable models possessing extra U(1) symmetries other than that already discussed.
In these cases, previous experience [21] suggests that the recursive structure of (15) will be
preserved but now with ψk

2

(
λ1, λj2 , . . . , λjk

)
behaving as a vector function while �(λ,µ) as

an underlying factorizable S-matrix. If this proposal turns out to be feasible in the future one
would be able to solve exactly several distinct families of integrable models from a rather
unified point of view.
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